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Flow Physics and TestFlow Physics and Test  Media EffectsMedia Effects

• Motivations for this work
– Achieve a better physical understanding of high-

speed reacting flows for propulsion applications
– Define the effects of vitiates in facility testing of

engine flowpaths and allow extrapolation to flight
conditions

• Both areas of research require the same
“tools”
– Well designed experiments and resulting

databases
– High fidelity non-intrusive diagnostics
– Accurate simulation tools
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Test Media EffectsTest Media Effects

• Hypersonic propulsion devices are developed in
ground test facilities that produce vitiates

• Vitiate effects on engines are not well enough
known to accurately predict flight performance of
the combustor

• Need method that compensates for vitiates to
accurately predict engine flame holding in flight,
based on ground testing in vitiated air



4

Analysis RequirementsAnalysis Requirements

• Develop enhanced codes to perform predictions based
on an increased capability to model turbulence,
turbulent mixing, and kinetics

• Develop new kinetics models
– Reduce the complexity of the chemistry by up to a factor of

100
– Identify and verify primary chemical interactions through

sensitivity studies and experimentation

• Improve diagnostic capabilities for measuring mean
and fluctuating temperature, velocity, and chemical
species
– Increase precision of the existing temperature and species

measurements and add a 3-component velocity measurement
capability, to fully characterize a supersonic combusting flows
for the first time
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Overall Project ScopeOverall Project Scope

• Conduct experiments using simplified geometry and
collect critical data for modeling improvements

• Increase diagnostic capability to collect mean and
fluctuating data (velocity, temperature, and species)

• Improve fidelity of simulation tools (VULCAN and WIND
codes) with improved phenomenological models
–– TurbulenceTurbulence
–– Chemical KineticsChemical Kinetics
–– Interactions between these phenomenaInteractions between these phenomena

• Support the development of advanced simulation tools
including large eddy simulation and hybrid RANS-LES
capabilities for component and flowpath design
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Experiments

Andrew Cutler
George Washington University

Diego Capriotti and Tom Mills
NASA Langley Research Center
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NRA - Supersonic Combustion Free-JetNRA - Supersonic Combustion Free-Jet
ExperimentExperiment

• Objective to provide experimental database for
development of turbulence and chemistry models
employed in CFD codes for hypersonic airbreathing
engines
– Detailed flow field data
– Mean and turbulence statistics
– Multiple simultaneously measured parameters (u, v, w, T, composition)

• Axisymmetric coflowing freejet geometry
– High-speed (M=1, 1.6, 2) centerjet of combustion products (contains excess

O2 or excess H2)
– M≤1 coflow of unheated gas (air, H2, CH4, etc.)
– Multiple possible cases, attached and detached flames, mixing only

• Many advantages
– Good optical access, long run times
– Symmetry allows fewer spatial points
– More repeat measurements at each point for better statistics
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Case 1: Mixing

Supersonic Combustion Free Jet ExperimentalSupersonic Combustion Free Jet Experimental
ConfigurationsConfigurations

Case 2: Combustion

Case 3: Combustion  with Flameholding:
(a) Center-jet fuel                               (b) Coflow fuel
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Case 2: Mach Number Contours

Conditions With and Without FlameholdingConditions With and Without Flameholding
Verified by CFDVerified by CFD

Case 2: OH Concentration Contours

Case 3: Mach Number Contours Case 3: OH Concentration Contours
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Flameholding Visualizations
• Selected Examples From Test Matrix

– Cases with attached and detached flames
– H2 rich center jet with air coflow and vitiated air center jet with H2 (or CH4) coflow
– M=1 and M=2 center jet

87

Texit~935 K

M=2 Vitiated Air Center Jet
with Subsonic H2 Coflow (φ=1)

18

Texit~1185 K IR (~8µm) Visible (true color)

M=1 “Vitiated” H2 Center Jet (50% H2,
Texit~1700 K) with Sonic Air Coflow

Attached
flame

Detached
flame
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Laboratory and Full-Scale ModelsLaboratory and Full-Scale Models

• Nozzle connects to LaRC
DCSCTF vitiated air
heater

• 63.5 mm dia. centerjet
• Final database
• Diagnostics better

spatially resolve flow
turbulence
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Laboratory ExperimentsLaboratory Experiments

• Acquired CARS-IRS measurements in
laboratory supersonic combusting jet hardware
– Objective to shake down CARS-IRS technique

• Published results at AIAA Conferences

Burner in operation H2 coflow
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Model Testing in DCSCTFModel Testing in DCSCTF

IR image of testing with H2 coflow
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Diagnostics

Paul Danehy
NASA Langley Research Center
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   Diagnostics: CARS / RayleighDiagnostics: CARS / Rayleigh

• CARS:  3 incoming beams generate a blue beam
– Blue beam carries information about temperature and

composition
– Can probe N2, O2, H2, H2O, CO2, NO, and others.

• Captured Rayleigh scattering from the green beam
– Captured from 3 angles: measure 3 components of velocity
– Determined density from magnitude of scattering

• Marriage of CARS & Rayleigh is unique
– Is the most thorough characterization of reacting gas state ever

Overview:

CARS = Coherent anti-
Stokes Raman
Spectroscopy
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CARS System InstallationCARS System Installation

• Mobile CARS/IRS System built and tested in laboratory
• Transmitting Station has been installed in basement under DCSCTF
     - 3 lasers passed through hole in ceiling to facility.
• Beams are collected by X-Y-Z traverse stages:
     - forms CARS focus and holds Rayleigh collection optics.
• Shakedown in June/July; Testing began Aug.

Receiving Optics Station in
Facility

Transmitting Station
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Diagnostics SummaryDiagnostics Summary

• CARS & Rayleigh successfully combined
– Simultaneous measurements of T, V, species in an

atmospheric pressure flame
• Built Mobile CARS/Rayleigh System

– Installed and used in facility for testing large scale jet
flame

• Testing anticipated to conclude in December
– Preliminary results 6 months after completion of test

• Hand off to other program participants March 08
– Final results 9 months after completion of test
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Large Eddy Simulation

Farhad Jaberi
Michigan State University
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NRA - Large Eddy SimulationNRA - Large Eddy Simulation

Objectives

• Develop a validated high-
fidelity numerical model for
high speed turbulent reacting
flows.

• Study combustors of interest
to NASA for various
flow/combustion parameters
via numerical models.

• Improve basic understanding
of turbulent combustion in
supersonic and hypersonic
flows.
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NRA - Large Eddy SimulationNRA - Large Eddy Simulation

FY 2007/08 Key Milestones
• Development and implementation of high-order finite-

difference compact operators and WENO schemes for
flows with shock waves.

• Extension of scalar FMDF and existent LES submodels to
compressible flows.

• Simulations of compressible subsonic turbulent flows in
realistic systems via new numerical methods and subgrid
models.

• Development of a stochastic formulation for compressible
velocity-scalar FMDF.
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Robert Baurle
NASA Langley Research Center

Jay Edwards
North Carolina State University

RANS and Hybrid RANS Code
Development
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NRA - RANS and Hybrid RANS CodeNRA - RANS and Hybrid RANS Code
DevelopmentDevelopment

Objectives

• Development and refinement of
hybrid large-eddy / Reynolds-
averaged simulation (LES/RANS)
methods for high-speed turbulent
flows

• Applications to sonic injection into
a supersonic crossflow, crossing-
shock interactions, and shock-train
propagation

• Implementation of LES/RANS
methods into NASA’s VULCAN
code

• Development of automatic block-
splitting / partitioning algorithms for
structured meshes and
implementation into VULCAN
(subcontract to Corvid
Technologies)
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NRA - RANS and Hybrid RANS CodeNRA - RANS and Hybrid RANS Code
DevelopmentDevelopment

FY 2007/08 Key Milestones
• Improved RANS-to-LES blending functions and methods for

controlling turbulence energy distribution developed and demonstrated
• LES/RANS simulations of air-air sonic injection experiments of

Gruber, et al (AFRL) completed; helium-air simulations to be
performed next

• Analysis of LES/RANS data to calculate turbulent Schmidt /Prandtl
number variation underway

• Generalized recycling / rescaling module for structured meshes written
and being debugged and tested

• Beta version of block-splitting / merging codes developed and
delivered to NASA
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Simulation Using the Wind-US Flow Solver atSimulation Using the Wind-US Flow Solver at
NASA/GRCNASA/GRC

Boundary Layer Transition for
Mach 7.9 Cone:

Wind-US/Conjugate  Heat Transfer
Applied to Rocket with Cooled Panels:

FY08 Plans:
1. Add advanced turbulence models

(EASM’s) and variable Prt, Sct
capability; coordinate with Vulcan CFD
R&D.

2. Implement and validate multiphase
kinetics capabilities.

3. Examine UVA mode-transition
experimental configuration; address
vitiated air effects.

Advanced EASM turbulence
modeling:
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Combustion Kinetics

Harsha Chelliah
University of Virginia
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• Ignition delay and flame strength and the resultant flame holding
can be improved or weakened by facility contaminants altering the
performance of engines as compared to flight in the atmosphere

• Accurate finite-rate chemical kinetic models are required to
understand the effects of contaminants in facilities and to
extrapolate results from ground-based facilities to flight

• Systematically developed Reduced Reaction Models Approach
allow the large chemical kinetic models reduced to a tractable level
without losing significant accuracy

• Have developed number of tools to automate the implementation
of above concepts to any detailed reaction model selected. These
include:

- Reaction pathway analyses/fast reactions
- Steady-state species selection based on pre-determined 
  tolerance level and choice of obtaining explicit/implicit 
  expressions for species in SS
- Have developed 15-18 step reduced reaction models for ignition
  and propagation of ethylene/methane/hydrogen/air mixtures

NRA - Chemical Kinetics ModelingNRA - Chemical Kinetics Modeling
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Summary:
• Have developed series of reduced reaction models for H2-air (4-steps), CH4-air
(13 steps), and C2H4-air (15-18 steps) that are valid for a wide range of equivalence
ratios, pressures, and temperatures.
•Models have been readily exported to multi-dimensional computational flow codes.

NRA - Chemical Kinetics ModelingNRA - Chemical Kinetics Modeling

Future Work:
• Need to couple with turbulence models

•Reduced models developed have
been implemented in multidimensional,
laminar reacting flow simulations using
SPARK 2D code [see figs: detailed
(solid), 18-step (dashed)].
•Relative computational time  (see
C&F paper for details) :
Detailed/Skeletal/18-step
RRM=1.0/0.364/0.115
(only chemical source terms –do not include savings on
solving pde’s)
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Concluding RemarksConcluding Remarks

• FY07 tasks are on schedule
– Earlier delays due to nozzle fabrication and final diagnostic

development in combustion experiment have been
overcome

• Diagnostic and experimental activities completed in
laboratory facilities

• Testing in full scale facility (DCSCTF) began in July
2007 following completion of nozzle fabrication

• Work to further enhance the CARS-Rayleigh System
is currently underway

• Work under NRA’s have been successful and on
schedule

• Work represents a comprehensive investigation and
tool development activity for a very complex
combustion environment


